考试科目:工程经济 工程法规及相关知识 工程项目管理 专业工程管理与实务  相关课程:环球网校二级建造师考试培训视频课程简章
工程类  一级建造师 二级建造师 监理工程师 一级造价师 二级造价师 一级建筑师 二级建筑师 咨询工程师 一级结构工程师 安全工程师 一级消防工程师 二级消防工程师
工程类  注册测绘师 环评工程师 城乡规划师 房地产估价师 电气工程师 岩土工程师 暖通工程师 环保工程师 水利水电工程师 化工工程师 给排水工程师 造价实训 BIM
财经类  初级经济师 中级经济师 高级经济师 初级会计职称 中级会计职称 注册会计师 税务师 统计师 初级审计师 中级审计师 基金从业 证券从业 期货从业 银行从业
健康类  执业药师 执业护士 卫生职称考试 临床执业医师 中医执业医师 中西医执业医师 口腔执业医师 健康管理师 育婴师 中医康复理疗师 中医养生保健师 小儿推拿师
综合类  导游资格证 教师资格证 教师招聘考试 心理咨询师 社会工作师 人力资源管理师 人力资源经理 人力资源实训 软考高级职称 软考中级职称 英语翻译资格 公共英语
    当前位置: 环球网校 >> 一级建造师 >> 考试资讯 >> 管理与实务辅导资料 >> 文章内容

茂名热电厂直流系统屏更新改造设计方案浅析

  1、老式直流系统屏存在的缺点

  茂名热电厂原用的直流系统屏为老式直流系统屏(同一屏为双母线结线,采用直流发电机及硅充电装置)。从超过30 a的运行情况来看,主要存在的缺点或不足之处如下。

  1.1双工作母线结线布置复杂

  因直流屏采用双工作母线结线,6根直流母线水平布置于屏顶上(根据控制、信号音响的需要,直流母线上还设有8根小母线)。在同一块屏上,有两组母线的馈线回路或电源与馈线回路相混合布置。当设备出现接触不良等缺陷时,往往因结线复杂和设备间距小,而使缺陷难以处理。

  1.2仪表和灯光信号难以维护

  老式的直流屏,其屏的正面都不采用活动门的型式。这样,装于屏面上的仪表、信号灯等设备,往往损坏后不能更换。

  1.3直流发电机维护工作量和耗能大

  茂名热电厂原使用同轴电动直流发电机组及GVA型硅整流装置担负直流系统经常负荷及作为蓄电池的核对性充电设备。配有1台Z2-17,15kW的直流发电机,由J2-62-4,17kW的电动机带动,当直流电机持续运行时,电动机月耗电量约12MWh,影响节能降耗,且整流子碳刷易冒火花,需经常维护。当使用GVA型硅充电装置担负直流系统的经常负荷时,由于硅整流装置不能自动调节输出,直流系统负荷突变时(如汽机启动直流油泵),若不及时调整硅装置的输出,将会导致母线电压偏低,致使蓄电池过放电,严重时影响继电保护装置的正常工作。当蓄电池进行核对性放电时,因硅装置为不可逆式,无法作为蓄电池的放电负载,蓄电池须在空母线的前提下另接电阻作负载进行放电,而母线的倒闸操作较复杂,容易出现错漏。

  1.4绝缘监察装置动作灵敏度低

  老式直流系统屏采用电磁式绝缘监察装置反映直流系统的接地状况。从茂名热电厂多年的运行情况来看,该装置能正确反映单极明显的接地现象,但当两极的绝缘都下降时,却不能准确反映。

  2、新直流屏的设计原则

  茂名热电厂为早期发电厂,机组控制模式采用原苏联早期形式,即电气系统采用集中控制,60年代投运的1号、2号机组,机、炉采用分散控制,70年代的3号、4号机组,机、炉采用集中控制。因此,对于现代机组普通采用的单元机组独立的直流系统方式将无法实现,只能根据该厂的实际情况,采用全厂统一布置的直流系统方式。

  2.1、接线方式

  新的直流屏采用单母线分段的接线方式,两组蓄电池经联络刀开关进行连接。为防止两组蓄电池并列运行,联络刀开关与蓄电池电源刀开关之间应设有闭锁措施。

  2.2、屏上设备布置

  做到简单清晰,电源(充电设备和蓄电池)、馈线、事故照明装置布置于各自的屏上。带有仪表及灯光信号的屏面,使用活动门的型式。

  2.3、充电装置

  选用可控可逆式硅充装置,实行负荷自动跟踪,保证直流母线的电压质量。当蓄电池进行核对性放电时,硅装置工作于整流的逆变状态,蓄电池不用另接电阻作为放电负载。

  2.4、蓄电池组

  原则上选用免维护密封式蓄电池,当原GGM-800型蓄电池组经校验后,仍满足直流系统的要求时,可暂不更换。

  2.5、绝缘监察装置和馈线开关

  原则上选用90年代技术先进、成熟可靠的设备。例如,选用由CMOS集成电路组成的ZJJ-1型绝缘监察装置,该装置在直流两极绝缘均等下降时都能正确动作发信。

  3、新直流系统屏的设备选型

  3.1直流系统负荷

  经统计,直流系统各类负荷如表1.

  因茂名热电厂为中型火力发电厂,且与系统相连,所以蓄电池事故放电时间考虑为1 h.对于汽轮机润滑油泵,因为是高温、高压机组,故其事故计算时间为1.0h,直流润滑油泵的K值取0.8,密封油泵的K值取0.7计算。冲击负荷考虑为1台最大合闸电流的断路器合闸。

  3.2蓄电池组的选择

  3.2.1按事故持续放电状态选择

  tj=KkQsg/Isg=1.1×307 Ah/306 A=1.1 h

  式中 tj——GGM型蓄电池假想时间,h;Kk——可靠因数,取1.1;Qsg——事故负荷计算容量,Ah;Isg——事故放电电流,A.查《电力工程设计手册》(西北电力设计院、东北电力设计院主编)中P769曲线表,得Idj=16.8 A,则

  Qe≥36Isg/Idj=(36×306/16.8)Ah=658 Ah

  式中Qe——蓄电池的10 h放电容量,Ah;Idj——单位容量蓄电池在放电假想时间内所允许的放电电流,A.选用720 Ah的蓄电池即可。原选用的蓄电池为GGM-800型可满足要求。

  3.2.2按最大冲击电流选择

  Qe≥0.78(Isg Ich)=[0.78×(306 235)] Ah=422 Ah

  根据计算结果,蓄电池的容量按事故持续放电状态下计算选择。原运行的GGM-800型蓄电池组仍满足负荷的要求。

  3.2.3直流电压水平校验(以GGM-800型为例)

  a)按事故放电初期,蓄电池突然承受放电电流的电压水平验算:

  Kcho=Iso/C10=609 A/800 Ah=0.76 h-1

  式中 Kcho——单位容量蓄电池放电初期放电系数,h-1.查GGM型蓄电池短时冲击放电曲线表得:

  Kcho=0.76 h-1 时,Ucho=1.86 V,则直流母线电压为N.Ucho=106×1.86 V=197.16 V>0.85Ue

  式中 Ucho——单位容量电池冲击负荷初期端电压,V;N ——浮充电池个数;Ue ——直流母线额定电压,V. b)按事故放电末期,蓄电池再承受冲击负荷时的电压验算:

  Km=Is/C10=306 A/800 Ah=0.38 h-1

  Kchm=Ich/C10=235 A/800 Ah=0.29 h-1

  式中Km ——单位容量蓄电池持续放电系数,h-1;Kchm——单位容量蓄电池冲击放电末期放电系数,h-1.查有关曲线得Uchm=1.72 V,则直流母线电压为

  N.Uchm=106×1.72 V=182.32 V

  0.80Ue<N.Uchm<0.85 Ue

  式中 Uchm——单位容量蓄电池冲击负荷末期端电压,V.

  从计算结果来看,选取蓄电池为800 Ah时,按事故放电的末期,蓄电池再承受冲击负荷时,母线电压为182.32 V,能满足断路器的合闸电压要求,但难以满足直流油泵的运行要求(直流油泵运行允许电压范围为(-10%~ 10%)Ue间)。蓄电池的容量应选大一级为宜,即C10=1 000 Ah.但上述校验为运行中的极端情况,运行中出现的概率极少,当出现时可通过调整蓄电池组的放电个数来满足直流油泵的运行。故原选用的GGM-800 型蓄电池可满足要求。但原用的GGM-800 型 Ⅰ、Ⅱ组蓄电池运行时间已达10 a以上,受蓄电池自放电、过放电及电极纯化等影响,蓄电池阴、阳极板脱落渗液严重,电池难以满足充电,可靠性大大降低。因此,利用改造机会将Ⅰ、Ⅱ组蓄电池更换为英国进口的VH34-1000 型免维护蓄电池。

  3.2.4蓄电池的个数

  蓄电池个数为: N=230/1.85=124,其中基本电池数为88个,端电池数为36个。

  3.3充电设备的选择

  3.3.1核对性充电设备

  3.3.1.1充电设备的额定电流

  a)按事故放电后进行充电的要求选择充电设备,计算公式为:

  Ic=1.1Qsg/t Ijc=1.1×307 Ah/12 h 33A=61 A

  式中 Ijc——浮充电设备的工作电流,A;Ic——充电设备应具备的输出电流,A. b)考虑核对性充放电,按最大充电电流选择,

  Ic=0.1Qe Ijc=(0.1×800 33)A=113 A

  故充电设备的额定输出电流应大于113 A.

  3.3.1.2充电设备的输出电压范围

  对有端电池的直流系统,充电设备的电压应满足蓄电池充电末期的电压选择。即:

  Uc=N×Ucm=124×2.4 V=297.6 V

  式中Uc ——充电设备输出电压,V;Ucm——蓄电池满充电端电压,V.取最大一级,即360 V.充电设备容量:Pc=IcUcm=113 A×360 V=41 kW.

  不考虑选用直流发电机,应选用的硅整流装置为KGCfA-150/360,则额定输出电流为150 A,最高输出电压为360 V.

  3.3.2浮充电设备

  浮充电设备持续负荷电流Ifc为Ifc=0.004 2Qe Ijc=(0.004 2×1 000 33)A=37.2 A

  浮充电设备正常工作容量Pfc为Pfc=IfcUcm=37.2 A×360 V=14 kW

  按核对性充电设备选得的KGCfA-150/360可满足蓄电池浮充电要求。

  4、结束语

  通过分析茂名热电厂老式直流系统屏存在的缺点或不足之处,提出了其更新、改造的设计方案。新设计的直流系统屏既满足经济性、可靠性、技术性的要求,又美观大方,维护方便。该直流系统自1997年初全部改造(包括将原用的GGM-800型蓄电池更换为VH34-1000 型免维护电池)投运以来,运行情况良好,解决了过去可靠性低、维护困难、直流系统绝缘差、充电机因大电流开关合闸经常跳闸等一系列问题,在该厂的安全发、供电方面发挥了重要的作用。

  2.5初级电源的连接电缆

  在大多数使用场合,试验电源均从用户的系统获取。根据被试电缆的长度和电容,视在功率可能需要达200 kVA.但是,在很多的试验场合下,可能仅仅需要电源视在功率小于50 kVA.为此,运输车还有装在电缆盘上的连接电缆,长度200 m.

  在所接入的电源负荷较大的场合或者馈电位置远离公用电源系统时,本移动式大容量调频串联谐振装置还添加有可灵活移动的发电机。

  2.6绝缘气体源的环境安全

  运输车上有SF6气体充气站,提供所需的SF6气体以及充气至密封终端的真空和压力系统,并提供可排气和再充气5 MPa的压力容器。

  2.7在运输车上起吊工作

  户外终端或试验电缆密封终端安装至电抗器需要质量达100 kg的起重机。起重机也安装在拖车上。这样,在用户的现场就可直接进行工作而不受其他任何辅助设备的限制。

  在开始安装的时候,通常不可能与用户的电网相连接。因此,起重机由直流电动机液压驱动,直流电动机由拖车上的蓄电池供电。这样,进行试验的准备工作不会有任何延误。

  2.8设备控制和用户操作室

  运输车是按成套移动式调频串联装置而设计的,适用于户外使用。因此,也装有宽敞的测试间。其内包括电子器件控制设备,计算机控制的联机装置以及容纳操作和观察人员的足够空间。用户能在各种气候条件下从事试验,而且便于试验时做记录或试验全部结束后立即编写试验报告。

  3、运行经验

  本试验装置自研制成功后,已用于110 kV XLPE绝缘电缆线路的现场试验,并取得初步有效运行经验。

  自从1996年以来,已在高压电缆线路进行交流电压试验。大约80%的试验连接是经由户外密封终端而进行的,约20%则是经由GIS开关装置进行。在已试验的电缆线路中,长度最长的约3.8 km,最高试验电压为160 kV,仅利用试验设备最大功率的50%.这意味着还可以试验更长的电缆线路。

  经由户外密封终端可方便地把交流电压馈电至被试电缆线路。接线方式如图2所示。利用铜导线把电抗器的电压输出接至电缆密封终端。

  4、结束语

  用于长距离电缆线路的交流电压试验,需要相当大和重的试验设备。为此,以往的XLPE电缆都是采用直流电压试验。高压XLPE电缆线路的运行经验表明,采用直流电压耐压试验不能有效地检出XLPE电缆缺陷,特别是有缺损的XLPE电缆附件。这一点已取得国际共识,采用更有效的试验方法势在必行。

  通过对工频串联谐振试验装置的研究和试制,已获得一种适合于XLPE绝缘电缆和附件的试验方法,即施加工频或接近工频的交流电压,在电缆及附件上产生的电场分布与实际运行工作电压下的电场分布相同,能够比较有效地检出XLPE电缆及附件缺陷,并逐步成为各国用作XLPE绝缘电缆线路的现场试验方法。

  本文所介绍的新型调频串联谐振试验装置,是把供电电源、产生试验能量的主设备、连接至电缆线路的专用连接线和控制单元等所有组件全部安装在低底架的拖车上。这样就能机动灵活便于运作。迄今,最频繁使用的是把试验电压接至户外密封终端,也进行过把交流电压经由试验电缆而馈电至符合IEC 859的GIS开关设备。运行经验表明,该装置的电气系统和连接技术两者的研制都是令人满意的,而且可对高压XLPE绝缘电缆线路进行既可靠又经济的交流电压试验。

  综上所述,开发并应用适合现场试验的交流高压试验装置具有现实意义。我们要借助国外的经验,加强试验设备研制开发,加强试验技术的研究,希望高压XLPE绝缘电缆线路的现场试验会有突破性成就。

  参考文献

  1、Weinberg W, Goehlich L,Scharchmidt J.Site tests of XLPE-insulated high-voltage cable systems with AC voltage[J]。Elektrizitts Wirtschaft,1997,96(9):400~407

  2、应启良。我国高压XLPE绝缘电缆线路的竣工试验[J]。电线电缆,1998(6):29~36

  3、朱匡宇,周良才。中压橡塑绝缘电力电缆现场交流耐压试验[J]。华东电力,1994(8):1~5




上一篇:智能建筑的弱电工程——谈上海万豪大酒店弱电系统设计
下一篇:IGBT直接串联高压变频器在炼铁厂冲渣泵上的应用